

Module Title:		Advanced Engine Thermodynamics and Powe		train	Leve		7	Credit Value:	2	0
Module code:		ENG756	Is this a new Yes module?			Code of module being replaced:			N/A	
Cost Centre:		GAPC	JACS3 code:			H330				
Trimester(s) in which to be offered:			With effect from: Septe			ember 17				
School:	DI: Applied Science, Computing and Engineering				lodule eader: O.Durieux					
Scheduled learning and teaching hours 52 h								52 hrs		
Guided independent study				148 hrs						
Placement				0 hrs						
Module duration (total hours) 200 hrs										
										 []
Programme(s) in which to be offered								Co	re	Option
MSc Automotive Engineering								\checkmark		
Pre-requi	sites									
None										

 Office use only

 Initial approval February 17

 APSC approval of modification N/A
 Version 1

 Have any derogations received Academic Board approval?
 Yes ✓ No □

Module Aims

This module aims to provide students with an in-depth understanding of engine thermodynamic of real engines.

The module also includes knowledge for the optimisation of modern powertrains so as to prepare students to solve practical problems and to carry out research and development.

Int	ended Learning Outcomes		
At	the end of this module, students will be able to	ŀ	Key Skills
			KS2
1	Develop a full analysis of the real combustion process taking place in ICE. Predict and solve combustion anomalies.	KS3	KS4
		KS6	
2			KS2
	Demonstrate a comprehensive understanding of fuel cells and alternative energy sources.	KS3	KS4
		KS6	
3	Analyse the energians of vehicle transmission and braking	KS1	KS2
	Analyse the operations of vehicle transmission and braking systems from an efficiency point of view. Design and match	KS3	KS4
	powertrain systems (and sub-systems).	KS6	
4			KS2
	Analyse the performances and design an electric/hybrid electric powertrain.	KS3	KS4
		KS6	

Application of science in technology, design for efficiency, environmental issues awareness, mathematical applications.

Derogations

A derogation from regulations has been approved for this programme:

Students are required to achieve a minimum overall module mark of 50%, with each element of assessment (where there is more than one assessment) requiring a minimum mark of 40%.

Assessment:

All intended learning outcomes will be assessed by means of one 3 hour exam.

Analytical and descriptive questions will typically be proposed, the student will not have the choice in the questions to be answered.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2 ,3, 4	Examination	100%	3 hrs	

Learning and Teaching Strategies:

The module will be delivered through lectures, tutorials and student-driven investigative work assisted by the use of computer based design and simulation software when available. Relevant video material and practical demonstrations will be used to strengthen topics from within the module.

Syllabus outline:

Otto and Diesel Cycle Engines Analyses:

Efficiencies of real engines,

Ignition, normal and abnormal combustions in SI and CI engines,

Combustion chamber design.

Emissions and emissions control (HC,Nox and particles), engine management systems. Fuels and additives,

Dynamic behaviour of valve gear including valve operating systems.

Alternative Powertrains:

Electric and hybrid electric powertrain: design, performance and efficiency analysis. Atkinson cycle for hybrid engines, battery types.

Fuel Cells : Solid polymer fuel cells (SPFC)

Sources of hydrogen for SPFC (Steam reforming, partial oxidation reforming.), storage.

Ancillaries:

Engine lubricants and lub systems.

Transmission and Driveline:

Friction Clutches

Gear theory (helical, hypoid and planetary)

Manual, automatic, continuously variable transmission: Power flow and control Differentials.

Bibliography:

Essential reading

Pulkrabek (2013); *Engineering Fundamentals of the Internal Combustion Engine*; 2nd Ed, Prentice.

Hall Stokes A (1999); Manual Gearbox Design; Butterworth Heinemann.

Makartchouk A (2002); *Diesel Engine Engineering: Thermodynamics, Dynamics, Design and Control*; Marcel Dekker Ltd.

Indicative reading

Hiereth H. (2007); Charging the Internal Combustion Engine; Springer-Verlag.